JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **27**, No. 3, August 2014 http://dx.doi.org/10.14403/jcms.2014.27.3.495

ψ-UNIFORM STABILITY FOR LINEAR IMPULSIVE DIFFERENTIAL EQUATIONS

YINHUA CUI*, SUNG SOOK KIM**, AND YOON HOE GOO***

ABSTRACT. In this paper, we show the ψ -uniform stability for linear impulsive differential equations and their perturbations by using the impulsive Gronwall's inequalities.

1. Introduction

Impulsive differential equations and application were introduced by some authors: A. M. Samoilenko and N. A. Perestyuk [3], V. Lakashmikantham, D. D. Bainov and P. S. Simeonov[13], Bainov and Simeonov[4, 6].

Recently, it has been realized that impulsive differential equations form a natural description of observed evolution phenomena of several real world problems, and therefore their study has attracted much attention [13].

Akinyele[1] introduced the notion of ψ -stability of degree k with respect to an increasing function $\psi \in \mathcal{C}(\mathbb{R}_+, \mathbb{R}_+)$, which is differentiable on \mathbb{R}_+ and such that $\psi(t) \geq 1$ for $t \geq t_0$ and $\lim_{t\to\infty} \psi(t) = b$, $b \in [1, \infty)$. Diamandescu in[2], proved some sufficient conditions for ψ -stability of the zero solution of a nonlinear Volterra integro-differential system. Bhanu Gupta and Sanjay K. Srivastava investigated ψ - exponential stability of non-linear impulsive differential equaions[12].

In this paper we show the ψ -uniform stability for linear impulsive differential equations at fixed moments and their perturbations by using impulsive inequality of Gronwall type.

Received June 11, 2014; Accepted July 02, 2014.

²⁰¹⁰ Mathematics Subject Classification: Primary 34A37, 34D10, 34G20.

Key words and phrases: impulsive stabilization, impulsive differential equation, impulsive integral inequalities, perturbed linear system.

Correspondence should be addressed to Yinhua Cuiyinhua_j@hotmail.com.

Research Fund for the Doctoral Program of Harbin University of Commerce (No. 14RW06).

2. Preliminaries

Let \mathbb{R}^n be the *n*-dimensional real Euclidean space and $\|\cdot\|$ denotes the norm on \mathbb{R}^n .

Let $\nu = \{t_k\}_{k=1}^{\infty} \subset [t_0, \infty)$ be an unbounded and increasing sequence. Denoted by $PC([t_0, \infty), \mathbb{R}^n \times \mathbb{R}^n)$ the set of functions $\varphi : [t_0, \infty) \to \mathbb{R}^n \times \mathbb{R}^n$ which are continuous for $t \in [t_0, \infty) \setminus \nu$, are continuous from the left for $t \in [t_0, \infty)$, and have discontinuities of the first type at the points t_k for each $k \in \mathbb{N}$.

We consider the linear impulsive system

(2.1)
$$\begin{cases} x' = A(t)x, \ t \neq t_k, \\ \Delta x = B_k x, \ t = t_k, \\ x(t_0^+) = x_0, \end{cases}$$

where $A \in PC([t_0, \infty), \mathbb{R}^n \times \mathbb{R}^n)$, and its perturbed linear system with fixed moments of impulse

(2.2)
$$\begin{cases} y' = A(t)y + C(t)y, \ t \neq t_k, \\ \Delta y = B_k y + R_k y, \ t = t_k, \\ y(t_0^+) = y_0, \end{cases}$$

where $C \in PC([t_0, \infty), \mathbb{R}^n \times \mathbb{R}^n)$, and B_k, R_k are $n \times n$ matrices.

We assume that the solution y(t) of system (2.2) is left continuous at the moments of impulsive effect t_k , i.e., $y(t_k^-) = y(t_k)$, and $\Delta y(t_k) = y(t_k^+) - y(t_k)$.

LEMMA 2.1. [5, Theorem 1.5] Let $(t_0, x_0) \in \mathbb{R} \times \mathbb{R}^n$. Then the following statements hold:

- 1. There exists a unique solution of equation (2.1) with $x(t_0^+) = x_0$ (or $x(t_0) = x_0$) and this solution is defined for $t > t_0$ (or $t \ge t_0$).
- 2. If $det(E + B_k) \neq 0$ for each $k \in \mathbb{Z}$, then this solution is defined for all $t \in \mathbb{R}$.

The next result follows from a simple calculation.

LEMMA 2.2. [5] Each solution y(t) of (2.2) satisfies the integro-summary equation

$$y(t) = W(t, s^{+})y(s) + \int_{s}^{t} W(t, \tau)C(\tau)y(\tau)d\tau + \sum_{s < t_{k} < t} W(t, t_{k}^{+})R_{k}y(t_{k}), \ t \ge s,$$

where W(t, s) is the Cauchy matrix for equation (2.1).

LEMMA 2.3. [5, Lemma 1.4] suppose that for $t \ge t_0$ the inequality

(2.3)
$$u(t) \le c + \int_{t_0}^t b(s)u(s)ds + \sum_{t_0 \le t_k < t} \beta_k u(t_k)$$

holds, where $u \in PC(\mathbb{R}, \mathbb{R})$, $b \in PC(\mathbb{R}, \mathbb{R}^+)$ and $\beta_k \ge 0$, $k \in \mathbb{Z}$ and c are constants. Then we have

(2.4)
$$u(t) \le c \prod_{t_0 \le t_k < t} (1 + \beta_k) \exp\left(\int_{t_0}^t b(s) ds\right)$$

(2.5)
$$\leq c \exp\left(\int_{t_0}^t b(s)ds + \sum_{t_0 \leq t_k < t} \beta_k\right), \quad t \geq t_0.$$

We will prove that under a general "small" mean condition on the perturbations C and R_k , ψ -uniform stability of system (2.1) is inherited by the perturbed system (2.2).

DEFINITION 2.4. [8, Definition 2.5] The zero solution v = 0 of (2.1) (or system (2.1)) is called ψ -uniform stable if there exist a finite $\gamma > 0$ and invertible matrix function $\psi(t) \in PC([t_0, \infty), \mathbb{R}^n \times \mathbb{R}^n)$ (or left continuous function $\psi(t) \in PC([t_0, \infty), \mathbb{R}^+)$) such that for any t_0 and $x(t_0)$, the corresponding solution satisfies

(2.6)
$$\|\psi(t)x(t)\| \le \gamma \|\psi(t_0)x(t_0)\|, \ t \ge t_0 > 0.$$

If we choose a convenient value of t, then we see that $\psi(t)$ is reduced to the unit matrix of order n. It is easy to see that if $\psi(t)$ is unit matrix, then the ψ -uniform stability is equivalent with the uniform stability.

3. Main results

THEOREM 3.1. The linear impulsive system (2.1) is ψ -uniform stable if and only if there exists a $\gamma > 0$ and invertible matrix function $\psi(t) \in PC([t_0, \infty), \mathbb{R}^n \times \mathbb{R}^n)$ such that for every $x_0 \in \mathbb{R}^n$,

(3.1)
$$\|\psi(t)W(t,t_0)\psi^{-1}(t_0)\| \le \gamma, \ t \ge t_0 > 0,$$

where $W(t, t_0)$ is the Cauchy matrix of (2.1).

Proof. Suppose that (2.1) is ψ -uniformly stable. Then, there is a $\gamma > 0$ such that for any $t_0, x(t_0)$, the solutions satisfy

$$\|\psi(t)x(t)\| \le \gamma \|\psi(t_0)x(t_0)\|, t \ge t_0.$$

Yinhua Cui, Sung Sook Kim, and Yoon Hoe Goo

Given any t_0 and $t_a \ge t_0$, let x_a be a vector such that $\|\psi(t_0)x_a\| = 1$

$$\begin{aligned} \|\psi(t_a)W(t_a,t_0)x_a\| &= \|\psi(t_a)W(t_a,t_0)\psi^{-1}(t_0)\psi(t_0)x_a\| \\ &= \|\psi(t_a)W(t_a,t_0)\psi^{-1}(t_0)\|\|\psi(t_0)x_a\| \\ &= \|\psi(t_a)W(t_a,t_0)\psi^{-1}(t_0)\|. \end{aligned}$$

So the initial state $x(t_0) = x_a$ gives a solution of (2.1) so that time t_a satisfies

$$\begin{aligned} \|\psi(t_a)x(t_a)\| &= \|\psi(t_a)W(t_a, t_0)x_a\| \\ &= \|\psi(t_a)W(t_a, t_0)\psi^{-1}(t_0)\|\|\psi(t_0)x_a\| \\ &= \|\psi(t_a)W(t_a, t_0)\psi^{-1}(t_0)\| \\ &\leq \gamma \|\psi(t_0)x(t_0)\|. \end{aligned}$$

Since $\|\psi(t_0)x_a\| = 1$, we see that $\|\psi(t_a)W(t_a,t_0)\psi^{-1}(t_0)\| \leq \gamma$. Since x_a can be selected for any t_0 and $t_a \geq t_0$, we see that $\|\psi(t_a)W(t_a,t_0)\psi^{-1}(t_0)\| \leq \gamma$ for all $t, t_0 \in \mathbb{R}$.

Now suppose that there exists a γ such that $\|\psi(t_a)W(t_a, t_0)\psi^{-1}(t_0)\| \leq \gamma$ for all $t, t_0 \in \mathbb{R}$. For any t_0 and $x(t_0) = x_0$, the solution of (2.1) satisfies

$$\begin{aligned} \|\psi(t)x(t)\| &= \|\psi(t)W(t,t_0)x(t_0)\| \\ &= \|\psi(t)W(t,t_0)\psi^{-1}(t_0)\|\|\psi(t_0)x_0\| \\ &\leq \gamma \|\psi(t_0)x(t_0)\|, t \geq t_0. \end{aligned}$$

Thus, ψ -uniform stability of (2.1) established.

THEOREM 3.2. If the zero solution x = 0 of (2.1) is ψ -uniformly stable and there exists a constant M such that

(3.2)
$$\int_0^\infty \|\psi(\tau)C(\tau)\psi(\tau)^{-1}\|d\tau + \sum_{0 \le t_k \le \infty} \|\psi(t_k^+)R_k\psi^{-1}(t_k)\| \le M$$

then the zero solution y = 0 of (2.2) is ψ -uniformly stable.

Proof. It follows from Lemma 2.2 that the solution y(t) of (2.2) is given by

$$y(t) = W(t, t_0^+)y_0 + \int_{t_0}^t W(t, s)C(s)y(s)ds + \sum_{t_0 < t_k < t} W(t, t_k)R_ky(t_k), \ t \ge t_0.$$

Then by Theorem 3.1 there exist a constant $\gamma>0$ such that

$$\|\psi(t)W(t,t_0)\psi^{-1}(t_0)\| \le \gamma, \ t \ge t_0 \ge 0,$$

where $W(t, t_0)$ is the cauchy matrix of (2.1). Thus we obtain

$$\begin{split} \psi(t)y(t) &= \psi(t)W(t,t_0)\psi^{-1}(t_0)\psi(t_0)y(t_0) \\ &+ \int_{t_0}^t \|\psi(t)W(t,\tau)\psi^{-1}(\tau)\psi(\tau)C(\tau)y(\tau)d\tau \\ &+ \sum_{t_0 < t_k < t} \psi(t)W(t,t_k^+)\psi^{-1}(t_k^+)\psi(t_k^+)R_k\psi^{-1}(t_k)\psi(t_k)y(t_k), \\ \|\psi(t)y(t)\| &\leq \gamma \|\psi(t_0)y(t_0)\| + \gamma \int_{t_0}^t \|\psi(\tau)C(\tau)\psi^{-1}(\tau)\|\|\psi(\tau)y(\tau)\|d\tau \\ &+ \gamma \sum_{t_0 < t_k < t} \|\psi(t_k^+)R_k\psi^{-1}(t_k)\|\|\psi(t_k)y(t_k)\|. \end{split}$$

By the Gronwall impulsive integral inequality [5]

$$\begin{aligned} \|\psi(t)y(t)\| &\leq \gamma \|\psi(t_0)y(t_0)\| \exp[\gamma \int_{t_0}^t \|\psi(\tau)C(\tau)\psi^{-1}(\tau)\| d\tau \\ &+ \gamma \sum_{t_0 < t_k < t} \|\psi(t_k^+)R_k\psi^{-1}(t_k)\|], \ t \geq t_0. \\ &\leq \gamma \|\psi(t_0)y(t_0)\| e^{\gamma M}, \\ &\leq \gamma' \|\psi(t_0)y(t_0)\| \end{aligned}$$

where $\gamma' = \gamma e^{\gamma M}$. Hence the zero solution y = 0 of (2.2) is ψ -uniformly stable. The proof is complete.

COROLLARY 3.3. If we set $\psi(t) = 1/h(t)$, then the Theorem 3.2 is similar to Theorem 2.7 in [10].

COROLLARY 3.4. If the zero solution x = 0 of (2.1) is uniformly Lipschitz stable and there exists a constant M such that

(3.3)
$$\int_0^\infty C(\tau)d\tau + \sum_{0 \le t_k \le \infty} R_k \le M$$

then the zero solution y = 0 of (2.2) is uniformly Lipschitz stable.

In order to obtain ψ -uniformly stability of solutions of nonlinear impulsive differential systems, we need the following assumption. (*H*):

(i) $f : \mathbb{R}^+ \times \mathbb{R}^n \to \mathbb{R}^n$ is continuous in $(t_{k-1}, t_k] \times \mathbb{R}^n$ and for every $y \in \mathbb{R}^n, n \in \mathbb{N}$

$$\lim_{(t,x)\to(t_k,y)} f(t,x) \text{ exists for } t > t_k.$$

Yinhua Cui, Sung Sook Kim, and Yoon Hoe Goo

In addition, there exists $\lambda \in PC(\mathbb{R}^+, \mathbb{R})$ such that

 $|f(t,y)| \le \lambda(t)|y|, \text{ for } (t,y) \in \mathbb{R}^+ \times \mathbb{R}^n,$

(ii) For every $k \in \mathbb{N}$, B_k is an $n \times n$ matrix, and $I_k : \mathbb{R}^n \to \mathbb{R}^n$ is continuous, and satisfies

$$|I_k(y)| \le \lambda_k |y|, \ y \in \mathbb{R}^n, \lambda_k > 0$$

We consider nonlinear impulsive differential system

(3.4)
$$\begin{cases} y' = A(t)y + f(t, y), \ t \neq t_k, \\ \Delta y = B_k y + I_k(y), \quad t = t_k, \\ y(t_0^+) = y_0, \end{cases}$$

where f(t, 0) = 0.

We can obtain the various stability results from Theorem 3.2.

THEOREM 3.5. Assume that conditions (H_1) holds, If the zero solution x = 0 of 2.1 is ψ -uniformly stable with condition H_2 : $\int_0^\infty \|\psi(\tau)\lambda(\tau)\psi^{-1}(\tau)\|d\tau + \sum_{0 \le t_k \le \infty} \|\psi(t_k^+)\lambda_k\psi^{-1}(t_k)\| < \infty, \text{ for each } t > 0, \text{ then the zero solution } y = 0 \text{ of } (3.4) \text{ is } \psi$ -uniformly stable.

The proof of Theorem 3.5 can be proved in a similar manner as that of Theorem 3.2. So we omit the proof.

COROLLARY 3.6. Assume that the ordinary differential system:

$$x'(t) = A(t)x(t)$$

is ψ -uniformly stable. Furthermore, suppose that $f, I_k (k \in \mathbb{N})$ and $\psi(t)$ satisfy the hypothesis of Theorem 3.5. Then the impulsive system

$$y'(t) = A(t)y(t) + f(t, y), \ t \neq t_k,$$
$$\Delta y(t_k) = I_k(y), \ t = t_k.$$

is ψ -uniformly stable.

To illustrate our results, we will give an example about ψ -uniformly stability of linear impulsive differential system.

EXAMPLE 3.7. Consider the linear impulsive differential equation

(3.5)
$$\begin{cases} x'(t) = \frac{1}{t^2}x, \ t \neq t_k, t > 0, \\ \Delta x = \frac{1}{k^2}x, \ t = t_k, k \in \mathbb{N} \end{cases}$$

where $\frac{1}{t^2} \in PC(\mathbb{R}^+, \mathbb{R})$, $\frac{1}{k^2} \in \mathbb{R}$, and $det(1 + \frac{1}{k^2}) \neq 0$ for each $k \in \mathbb{Z}^+$. Then the zero solution x = 0 of (3.5) is ψ -uniformly stable.

Proof. Let $(t_0, x_0) \in \mathbb{R}^+ \times \mathbb{R}$. Then we have

$$W(t,t_0) = \prod_{t_0 \le t_k < t} (1 + \frac{1}{k^2}) \exp\left(\int_{t_0}^t \frac{1}{\tau^2} d\tau\right), \ t \ge t_0 > 0,$$

and furthermore

$$|W(t,t_0)| = \left| \prod_{t_0 \le t_k < t} (1 + \frac{1}{k^2}) \exp\left(\int_{t_0}^t \frac{1}{\tau^2} d\tau\right) \right|$$
$$\le \exp\left(\int_{t_0}^t \frac{1}{\tau^2} d\tau + \sum_{t_0 \le t_k \le \infty} \left|\frac{1}{k^2}\right|\right).$$

it is easy to see that there exists M > 0 such that

$$\exp\left(\int_{t_0}^t \frac{1}{\tau^2} d\tau + \sum_{t_0 \le t_k \le \infty} \left|\frac{1}{k^2}\right|\right) \le M.$$
$$|\psi(t)W(t,t_0)\psi^{-1}(t_0)| \le \left|\psi(t)\exp\left(\int_{t_0}^t \frac{1}{\tau^2} d\tau + \sum_{t_0 \le t_k \le \infty} \left|\frac{1}{k^2}\right|\right)\psi^{-1}(t_0)\right)$$
$$\le \gamma.$$

Where $\psi(t) = e^{-t}$ for $t \ge t_0 > 0$ and $\gamma = M$. Hence the zero solution x = 0 of (3.5) is ψ -uniformly stable by Theorem 3.1.

References

- O. Akinyele, On partial stability and boundedness of degree k, Atti. Accad. Naz. Lincei Rend. CI. Sci. Fis. Mat. Natur. 65 (1978), no. 8, 259-264.
- [2] A. Dimandescu, On the ψ -stability of nonlinear voltera integro-differential systems, Electronic Journal of differential equations **56** (2005), 1-14.
- [3] A. M. Samoilenko and N. A. Perestyuk, *Differential Equations*, World Scientific Publishing Co., Inc., 1995.
- [4] D. D. Bainov and P. S. Simeonov, Systems with Impulse Effect: Stability, Theory and Applications, Ellis Horwood and John Wiley, New York, 1989.
- [5] D. D. Bainov and P. S. Simeonov, Impulsive Differential Equations: Asymptotic Propertites of the Solutions, World Scientific Publishing Co., River Edge, NJ, 1995.
- [6] D. D. Bainov and P. S. Simeonov, Impulsive Differential Equations: Periodic Solutions and Applications, Longman Scientific and Technical, 1993.
- [7] İ. B. Yasar and A. Tuna, Ψ-uniformly Stability for Time Varying Linear Dynamic Systems on Time Scales, International Mathematical Forum 2 (2007), 963-972.

Yinhua Cui, Sung Sook Kim, and Yoon Hoe Goo

- [8] S. D. Borisenko, On the asymptotic stability of the solutions of systems with impulse effect, Ukr. Math. J. 35 (1986), no. 2, 144-150.
- [9] F. Brauer and J. S. W. Wong, On asymptotic behavior of perturbed linear systems, J. Diff. Equations 6 (1969), 152-163.
- [10] S. K. Choi, N. J. Koo, and C. M. Ryu, h-stability for linear impulsive differential equations via similarity, J. Chungcheng Math. Soc. 24 (2011), no. 2, 393-400.
- [11] Y. Cui and C. M. Ryu, h-stability for linear impulsive differential equations, J. Chungcheng Math. Soc. 24 (2011), no. 4, 935-943.
- [12] B. Gupta and S. K. Srivastava, ψ exponential stability of non-linear impulsive differential equaions, International journal of Computational and Mathematical Sciences **4** (2010), 329-333.
- [13] V. Lakshmikantham, D. D. Bainov, and P. S. Simeonov, Theory of Impulsive Differential Equations, World Scientific Publishing Co., Inc., 1989.
- [14] R. Medina and M. Pinto, Uniform asymptotic stability of solutions of impulsive differential equations, Dyamic Systems and Applications 5 (1996), 97-108.
- [15] M. Pinto, Stability of nonlinear differential systems, Applicable analysis 43 (1984), 161-175.
- [16] M. Pinto, Perturbations of asymptotically stable differential systems, Analysis 4 (1992), 1-20.

*

Institute of Business and Economic Research Harbin University of Commerce Harbin, 150028, P. R. China *E-mail*: yinhua_j@hotmail.com

**

Department of Applied Mathematics Paichai University Daejeon 302-735, Republic of Korea *E-mail*: sskim@pcu.ac.kr

Department of Mathematics Hanseo University Chungnam 356-706, Republic of Korea *E-mail*: yhgoo@hanseo.ac.kr